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ABSTRACT 

VORTEX-INDUCED VIBRATIONS OF INCLINED CYLINDERS IN FLOW 

SEPTEMBER 2012 

ANIL B. JAIN, B.S., UNIVERSITY OF MUMBAI, INDIA 

M. S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Yahya Modarres-Sadeghi 

When a bluff body is placed in flow, vortices are shed downstream of the body. 

For the case of a bluff body with a circular cross-section (a cylinder) attached to a spring 

and a damper, when the frequency of vortex shedding is close to the natural frequency of 

the structure, the cylinder oscillates in a direction perpendicular to the flow. This is called 

Vortex Induced Vibration (VIV) and is a canonical problem in fluid-structure 

interactions. The majority of studies on VIV of a flexibly mounted rigid cylinder are for 

the cases where the flow direction is perpendicular to the long axis of the structure. 

However, in many engineering applications, such as cable stays in bridges, mooring lines 

of floating offshore wind turbines and undersea pipelines, the flow direction may not be 

perpendicular to the structure. The hypothesis is that the VIV in inclined cylinders is 

similar to a normal-incidence case, if only the component of the free stream velocity 

normal to the cylinder axis is considered. This is called the Independence Principle (IP). 

The IP neglects the effect of the axial component of the flow, which is legit for small 

angles of inclination, but not for large angles. In this Thesis, a series of experiments have 

been conducted on a flexibly-mounted rigid cylinder placed inclined to the oncoming 

flow with various angles of inclination (0° < θ < 75°) in a subcritical Reynolds number 
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range of 500 – 4,000 to investigate how the angle of inclination affects VIV. In these 

experiments, a rigid cylinder was mounted on springs, and air bearings were used to 

reduce the structural damping of the system. The system was placed in the test section of 

a recirculating water tunnel and crossflow displacements were measured. Even at high 

angles of inclination, large-amplitude oscillations were observed. The IP was found to be 

valid for angles of inclination up to 55°. While for all inclinations the onset of lock-in 

was observed to be at the same normalized flow velocity, for angles of inclination larger 

than 55°, the lock-in region (the range of dimensionless flow velocities for which the 

cylinder oscillates with a large amplitude) was smaller. These results show that the 

influence of the axial component of the flow is non-negligible for angles of inclination 

larger than 55°. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Vortex Shedding 

When a cylinder is placed in flow, shear layers are formed because of the 

separation of the boundary layer around the cylinder. The strength of the shear layer 

increases away from the cylinder and it continues to grow until a stronger opposing shear 

layer breaks off the former shear layer and results in vortex shedding downstream of the 

cylinder (Bearman, 1984). This repeated action results in Von Karman Vortex street. The 

number of vortices shed per unit time is called the frequency of vortex shedding and is 

non-dimensionalized through the definition of the Strouhal number: 

                                                             (1.1) 

where, fv  is the frequency of vortex shedding behind the cylinder.  

 

 

 

 

Figure 1. Vortex formation behind a cylinder (Gerrard, 1966). 
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The formation of vortex behind a circular cylinder in a flow can be shown using 

Gerrard’s (1966) sketch shown in Figure 1. As the separation takes place, the fluid (a) 

grows bigger and fluid (b) finds its way into the developing shear layer. The fluid (c) 

from the base of the cylinder entrains into fluid (b), increasing its size. Thus, two 

opposing signed vortices are formed and keep on drifting downwards away from the 

cylinder (Bearman, 1984).  

1.2. Vortex Induced Vibrations (VIV) 

When a flexibly mounted rigid cylinder is placed in flow, vortices are shed 

downstream of the cylinder. The shed vortices result in an oscillatory external force 

exerted on the cylinder. Consequently, the cylinder oscillates transverse to the flow 

direction. This is called Vortex Induced Vibration (VIV). The amplitude of VIV for a 

cylinder placed in flow can reach up to around one diameter of the cylinder in the 

transverse direction.  

Rigid structures with circular cross-sections are used extensively to study VIV, 

because of their various engineering applications. The system can be represented by a 

linear mass-spring-damper system as shown in Figure 2, in which a rigid cylinder with 

diameter D and length L, is supported by a spring with stiffness k and a damper with 

damping c. The cylinder is placed perpendicular to the flow with a velocity U and density 

ρ.   
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The equation of motion generally used to represent the oscillations of a cylinder 

in the transverse direction is the linear equation of a mass-spring-damper system, which 

is subjected to an external force due to the flow, and reads as:  

,                                                  (1.2) 

where, m is the mass per unit length of the cylinder, y is the cylinder position measured 

from rest, k is the spring stiffness, c is the structural damping and FY is the corresponding 

fluctuating transverse fluid force called lift force. The fluctuating lift force can be 

expressed in terms of the lift coefficient CY where: 

,                                                     (1.3) 

Assuming that the cylinder’s displacement has a sinusoidal form: 

                                                          ,                                              (1.4)                                                     

The fluid force leads the displacement of the cylinder by a phase angle f and is given by:                                                                     

,                                               (1.5) 

 

Figure 2. A rigid cylinder mounted on a spring-damper 
system and subjected to flow. 
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where, w =2pf and f  is the body oscillation frequency. From equations 1.2-1.5, the non-

dimensional amplitude and frequency can be derived as (Govardhan and Williamson, 

2000):  

,                                     (1.6) 

                                               .                                                   (1.7) 

 In these equations, 

                                                                                                                     (1.8)                                                                          

 is the dimensionless amplitude (A is the amplitude of oscillation);                                                        

                                                                                                                     (1.9)  

is the dimensionless frequency (f is the oscillating frequency of the cylinder and fN is the 

natural frequency of the system in water); 

                                                                                                       (1.10) 

 is the reduced velocity; 

                                                                                                         (1.11)                                                             

is the mass ratio, which is the ratio of the cylinder mass (or moving mass) to the mass of 

the displaced fluid (md); 

                                                            mA = CAmd                                                                                (1.12)                                                                                                        

is the added mass and md = prD2L/4 is the displaced fluid mass. CA is the potential added 

mass coefficient in otherwise still fluid. A nominal value for the added mass (CA) is 
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usually assumed to be 1;   

                                                          
                (1.13) 

is the effective added mass coefficient. It includes the effect due to the total transverse 

fluid force in-phase with the body acceleration (CYcosϕ), and 

                                                                                                          (1.14)                                                          

is the structural damping (δ is the logarithmic decrement).  

Table 1 summarizes the parameters used in this Thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 6 

Table 1. Nomenclature 

Amplitude ratio (A*)  

Damping ratio (ζ)  

Frequency ratio (f*)  

Natural frequency (fN) 
 

Reynolds number (Re)  

Strouhal number (St)  

Normalized reduced velocity (U*n) 
 

Reduced velocity (U*)  

Lift coefficient (CL)  

Drag coefficient (CD)  

Mass ratio (m*)  

Potential added mass coefficient (CA) mA = CAmd 

 

Effective added mass coefficient (CEA) 
 

 

Phase angle (φ°) 
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CHAPTER 2 
 

BACKGROUND 

Since the discovery of formation of vortices produced by translating rods through 

air by Strouhal (1878) and the analysis of stability of vortex street configurations by Von 

Karman (1912), the problem of VIV has been studied comprehensively. Some of the 

important work done in the field of VIV on normal incident and inclined rigid cylinder 

with only one degree of freedom (crossflow) are discussed in the following sections. 

2.1. A flexibly mounted rigid cylinder placed perpendicular to the flow  

A flexibly mounted rigid cylinder placed in flow can oscillate in both the 

streamwise (inline) and crossflow direction. In general the amplitude of oscillation in the 

inline direction is much smaller than that in the crossflow direction. Due to the nature of 

vortex shedding, the frequency of oscillation in the inline direction is twice the frequency 

of oscillation in the crossflow direction. The amplitude of cross flow VIV can be as large 

as 1-1.2 times the cylinder diameter.  

The dynamics of the system varies dramatically depending on the mass-damping 

factor, which is defined as m*ζ (see equations 1.11 and 1.14). In the following sections, 

we discuss the system response with high and small mass-damping factors. 

2.1.1. High mass-damping system 

The early studies on VIV were based on the experiments in the wind tunnel with 

relatively high mass ratios and damped systems, resulting in large mass-damping 

parameters. The purpose of these studies was to understand the VIV of the structures in 
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wind such as bridges and chimneys.  

An important study by Feng (1968) provided a comprehensive analysis of the 

amplitude and frequency response of the cylinder oscillating in the transverse direction. 

Figure 3 shows the non-dimensional amplitude (A*) and non-dimensional frequency 

plotted against reduced velocity (U*) (defined in equation 1.10). It can be seen that, 

initially, as the velocity (U) is increased from zero, the cylinder is stationary and the 

vortex shedding frequency (fV) follows the straight line of Strouhal number relation (St = 

0.198), similar to the fixed cylinder. As the flow velocity increases, the vortex shedding 

frequency (fV) approaches the natural frequency (fN) of the system (fV ~ fN), and it no 

longer follows the Strouhal number’s straight line. At this velocity, the cylinder starts 

oscillating in the crossflow direction. In fact, the vortex shedding gets locked in with the 

natural frequency of the cylinder and collapses into a single frequency. This is called 

“lock-in” phenomenon in Feng’s experiment. The maximum amplitude of 0.55D (D is the 

cylinder diameter) was achieved at a reduced velocity of 6.3. The arrows show the effect 

of hysteresis, depending on the approach to the lock-in range - whether from a low 

velocity or from a high velocity. The phase angle (phase difference between the leading 

fluctuating lift force and cylinder’s displacement) against the reduced velocity shows a 

hysteresis effect as well.  
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2.1.2. Low mass-damping system 

When a cylinder is placed in water and air bearings are used to reduce the 

structural damping, the setup can be considered as low mass-damping system. “Studying 

such systems is important because they have conditions similar to those of the offshore 

structures” (Khalak and Williamson, 1996). 

 

Figure 3. Oscillation characteristics for a freely vibrating circular cylinder in air 
with m*ζ  ~ 0.36. o, vortex-shedding frequency; +, cylinder frequency; □, phase 

angle; × , oscillation amplitude; φ° , phase angle between fluid force and cylinder’s 
displacement; fv, vortex shedding frequency; f, oscillating frequency of cylinder; 

U, free stream velocity; St, Strouhal number for fixed cylinder (Feng 1968) 
(Figure from Bearman, 1984). 

 

  



 

 10 

2.1.2.1. Amplitude response of low mass-damping system  

Khalak and Williamson (1996) studied the VIV of flexibly mounted cylinder with 

very low mass-damping system - almost an order of magnitude smaller than previously 

conducted experiments such as Feng’s (1968). 

The effect of m*ζ on the system’s response can be seen in Figure 4 where Khalak 

& Williamson’s (1997b) and Feng’s (1968) data are plotted. As the m* ζ becomes smaller 

(3% of Feng’s value), the lock-in range increases by four fold and higher peak amplitudes 

are observed (twice the peak amplitude of Feng’s experiment). Another important 

observation is the appearance of a third branch called the “upper branch” in comparison 

with the other two branches (initial and lower) seen in Feng’s results. It should be noted 

that in calculating the added mass, mA, the added mass coefficient, CA, is assumed to be 

equal to 1, instead of the effective added mass coefficient, CEA, which can be calculated 

by taking into account the total transverse fluid force in-phase with the cylinder’s 

acceleration. 

 

 

Figure 4. The amplitude response of flexibly mounted cylinder (■) Khalak 
and Williamson (1997b) with m*ζ = 0.013 in water and () Feng (1968) 
with m*ζ = 0.36 in air (Figure from Khalak and Williamson, 1997b). 
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Brankovic and Bearman (2006) and Govardhan and Williamson (2000) measured 

the transverse oscillations for even smaller m*ζ (Figure 5). The peak amplitude attains a 

value of around 1.2, which is higher than Khalak and Williamson (1997b) values. 

 

Figure 5. Amplitude response for m*ζ = 0.0014 () and 0.0032 () (Govardhan and 
Williamson, 2000) and m*ζ = 0.00016 (red dots) (Brankovic and Bearman, 2006) 

(Figure from Brankovic and Bearman, 2006). 
 

Khalak and Williamson (1997a) showed that the magnitude of peak amplitude in 

the upper branch depends on the combined value of m*ζ of the system (Figure 6), 

whereas the lower branch response seems to be independent from the mass-damping 

parameter. On the other hand, the relatively higher m*ζ used in the experiments 

performed by Griffin (1980) reveals the absence of upper branch and relatively smaller 

amplitude response. 
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Figure 6. Peak amplitude of the upper and lower branch at different m*ζ 

parameter. (), peak upper branch amplitude (Khalak and Williamson, 1997a); 
(), peak lower branch amplitude (Khalak and Williamson, 1997a); (o), peak 

amplitude (Griffin, 1980) (Figure from Khalak and Williamson, 1997a). 
 

2.1.2.2.  Frequency response of low mass-damping system  

Khalak and Williamson (1997a) measured the frequency response (f* = oscillating 

frequency (f) /natural frequency of the system (fN)) against the reduced velocity (U*) for 

m*ζ= 0.013 (m*= 2.4). As it can be seen in Figure 7, f* reaches a value of 1.5 and higher, 

which is very high compared to the values observed for f* in the case of high m*ζ.  

 
Figure 7. Frequency response f*= f/fN for m*ζ = 0.013. The U* and f* are formed 

using fN in water (Figure from Khalak and Williamson, 1997a). 
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The difference in frequency response for systems with low and high mass ratios 

(when m*ζ= constant) is because of the effect of the added mass (mA), which decreases as 

the reduced velocity increases and thus resulting in an increase in natural frequency 

according to the following equation: 

                                                                                                         
(2.1)

    
                                                         

Therefore, the low m* cylinders (Figure 7) have broader range of lock-in compared to 

high mass-ratio cylinders (Figure 8). The effect of added mass for high m* cylinder is not 

as significant, resulting in narrower range of lock-in (Vikestad et al., 2000). The classical 

lock-in phenomenon can be seen for larger mass ratios as well, as predicted by Bearman 

(1984) and shown by Khalak and Williamson (1997a) in Figure 8.  

 
Figure 8. Classical lock-in phenomenon observed for different mass ratios, m*=10.3 
(m*ζ = 0.017) and 20.6 (m*ζ = 0.019) (Figure from Khalak and Williamson, 1997a). 

 

2.1.2.3. Fluid forces in low mass-damping system  

Khalak and Williamson (1997b) measured the lift coefficient (CL(r.m.s.)) and drag 

coefficient (CD) by normalizing the forces by ½ρU2DL, where L and D are the immersed 
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length and diameter of the cylinder respectively, ρ is the fluid density, and U is the fluid 

velocity.  

Figure 9 shows a maximum CD of 5.2 with mean CD of around 3.5. This is three-

fold increase over the stationary case. CL(r.m.s.) reaches 2, which corresponds to a 

maximum CL of 3, five times increase over the stationary cylinder case. The jump 

between the initial and upper branch can be associated with the sharp peak in the lift 

coefficient, which occurs at the transition from the initial branch to the upper branch 

(Khalak and Williamson, 1997b). 

“The force coefficients (drag and lift) and the vortex shedding frequency are 

independent from the Reynolds number (A dimensionless parameter characterizing 

different flow regimes, defined as Re=UD/ν, where ν is the kinematic viscosity) as long 

as the latter is in the sub-critical regime (300 < Re < 3 ×105)” (Schewe, 1983). 

 
Figure 9. Lift coefficient CL and drag coefficient CD versus reduced velocity U* for 

m*=10.1 and m*ζ= 0.013 (Figure from Khalak and Williamson, 1997b). 
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2.2. Effect of the end conditions on VIV of vertical cylinder 

The end conditions of the cylinder play an important role in the observed VIV 

response of the cylinder. For a vertically suspended cylinder partially submerged in 

water, the upper end of the cylinder is in contact with free surface and the lower end is 

submerged in water. In order for the vortices shed downstream of the cylinder to remain 

parallel to the cylinder axis, three-dimensionality in the flow must be avoided. Three 

dimensionality can be induced in the flow if proper end conditions are not maintained. 

The free surface results in parallel shedding (Khalak and Williamson, 1996) but the lower 

end of the cylinder can induce three-dimensionality into the flow. Various types of end 

conditions used in the literature are listed below: 

a. Endplates attached to the test section with a small gap between the test cylinder end 

and the plate (Khalak and Williamson 1996,1997a, 1997b) (Figure 10a),  

b. Endplates attached to the cylinder (Stansby, 1974) (Figure 10b), 

c. Free end (Klamo, 2007) (Figure 10c), 

d. Free end close to the test section (Bearman and Brankovic, 2006 and Franzini et al., 

2009) (Figure 10d).  

 
Figure 10. Cylinders with different types of end conditions (Figure from Morse et 

al., 2008). 
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Morse et al. (2008) showed that the cylinder with attached end plate and without 

attached end plate behave similarly if the gap between the cylinder end and the plate in 

the latter case is less than 15% of the cylinder’s diameter. Cylinders with free end (gap 

more than 0.15D) have same peak amplitude, when compared with cases (a) and (b) but 

there is no distinct upper and lower branch of oscillation. Case (d) works well if the gap 

is less than 0.15D but it relies on the properties of the boundary layer or turbulence inside 

the test section of the water tunnel.  

2.3. Vortex induced vibrations of inclined cylinders  

Despite the extensive research being conducted on the VIV of normal-incident 

cylinders, many questions are still unanswered in the case of inclined cylinders. There are 

significant conflicting reports on the characteristics of VIV in inclined cylinders.  

A fixed inclined cylinder is considered to be similar to the normal-incidence case, 

through the use of the component of free stream velocity normal to the cylinder axis. This 

is called the Independence Principle (IP). The angle of inclination is defined as the angle 

between the cylinder axis and the vertical line if the flow is from left to right (Figure 11). 

Zero angle of inclination corresponds to a cylinder perpendicular to the incoming flow 

(cross-flow). 

 
Figure 11. Cylinder placed inclined with respect to the incoming flow along with the 

normal and tangential components of flow velocity. 
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Surry and Surry (1967) performed wind tunnel experiments on fixed inclined 

cylinder at five different speeds covering the Reynolds number range of 4,500 - 63,000 

for different angles of inclination (θ= 0°, 16°, 26°, 38°, 48° and 55°)They found that the 

Strouhal number (St) based on the normal velocity component remains constant till θ= 

40° and 50° (Figure 12) .  

 

Figure 12. Normalized Strouhal number for fixed cylinder with different angles of 
Inclination. 90° corresponds to vertical cylinder in the plot. (Figure from Surry and 

Surry, 1967). 

 

King (1977) investigated VIV of inclined circular cylinders in the subcritical Re 

range of 2000-20,000 and for angles of inclination ranging from -45° to +45°. He 

observed the maximum cross-flow amplitude in the range of normal reduced velocity 

(U*n = Ucosθ/fND) of 5.8-7.0. He encountered relatively large oscillations for inclination 

angles of +45° and -45° and also showed that the response of the cylinder is the same for 

both the negative and positive angles of inclination. He found that the maximum 
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amplitude increases with an increase in inclination and attributed this phenomenon to the 

change in the immersed length.    

Ramberg (1983) studied the effect of inclination angle for stationary and forced 

vibrating circular cylinders with aspect ratios 20-90 in the Re range of 150-1,100. A 

typical flow visualization result for a fixed inclined cylinder from Ramberg (1983) is 

shown in Figure 13. It can be seen that the vortices are parallel to each other but they are 

at an angle greater than the cylinder angle of inclination near the upstream end of the 

cylinder (θ1 in Figure 13). But at a certain distance away from the cylinder the vortices 

are aligned at the same inclination as the cylinder (θ2 in Figure 13). He determined that 

the results were affected by the end conditions, especially at low Reynolds numbers. He 

found that IP was not valid for stationary inclined cylinders because the shedding 

frequency was larger than what is expected by IP, whereas the shedding angle, the 

vortex-formation length, the base pressure and the wake width are all less when 

compared with a vertical cylinder in cross-flow with the same normal component of the 

free stream velocity. However, for the cylinders forced to oscillate in the Re range of 

160-460, he found that the vortex shedding is parallel to the cylinder. 

 
Figure 13. Flow visualization behind a fixed inclined cylinder in a wind tunnel 

(Ramberg, 1983) (Figure from Thakur et al., 2004). 



 

 19 

 Lucor and Karniadakis (2003) performed direct numerical simulations (DNS) to 

validate the Independence Principle for stationery and freely vibrating rigid cylinders for 

large angles of inclination (θ = -60° and -70°) with m*ζ = 0.006 and an aspect ratio (L/D) 

of 22. For a freely vibrating rigid yawed cylinder (RYC in Figure 14), they observed 

large crossflow amplitude for large inclination angles. The amplitude of oscillation 

decreased as the angle of inclination was increased (Figure 14). For -70° angle (Re = 

1000 or normalized Reynolds number Ren= Recosθ =342), the maximum dimensionless 

amplitude of oscillation (A*= 0.52) represented by case I (hollow triangle symbol), 

reached the value given by IP, when compared against the response of rigid cylinder 

normal to the incoming flow (Re = 300). The maximum A* for cylinder with θ= -60° was 

0.63 represented by case II (hollow circular symbol), smaller than the value for the free 

cylinder at normal incidence at Re= 1000 (A*= 0.75). (No exact comparison was 

available to validate IP but they compared with the normal incident cylinder at Re = 300. 

Ren for -60° and -70° inclined cylinder are 500 and 342 respectively). 

 
Figure 14. r.m.s. (ηrms) and maximum (ηmax) amplitude versus reduced velocity. In 

this plot A*is represented by η (Figure from Lucor and Karniadakis, 2003). 
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They showed that the vortex shedding behind the moving cylinder is parallel to 

the cylinder axis as long as the cylinder crossflow amplitude is not too small, and for zero 

cylinder response, the vortex shedding has a tendency to slant. For a stationery cylinder, 

they concluded that the IP is not valid for large angles of inclination (critical angle not 

discussed) and the vortex shedding angle (58°) is smaller than the angle of inclination. 

For the case of θ = -70°, the drag coefficient is higher than predicted by IP. For a -70°-

inclined moving cylinder, the drag coefficients at reduced velocity U*= 14.5 or U*n = 

4.95 (CD(mean)≈ 1.9) where lock-in occurs, are quite larger than predicted by IP (CD(mean) = 

1). Similarly, for the -60° yawed moving cylinder (Re= 1000 or Ren= 500), the drag 

coefficient increases as the U* increases and attains a value corresponding to a rigid 

normal cylinder (RNC) at Re= 1000, as shown in Figure 15.  

 
Figure 15. Mean drag coefficient (CD(mean)) versus reduced velocity (Figure from 

Lucor and Karniadakis, 2003). 

 

The lift coefficient CL(r.m.s.) (the hollow symbols are averaged over time whereas 

the solid symbols are averaged over the space) for the -70°-inclined moving cylinder is 
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close to the value predicted by the IP and for the -60°-inclined moving cylinder, CL(r.m.s.) 

is around 1 (Figure 16). 

 
Figure 16. r.m.s. lift coefficient (CL(r.m.s.))  versus reduced velocity (Figure from 

Lucor and Karniadakis, 2003). 

 

Thakur et al. (2004) performed an experiment on yawed cylinder (θ= 30° and 60°) 

by towing single and multiple cylinders in a tank and observed that the wake vortices 

approach the cylinder yaw angle sufficiently far away from the cylinder’s upstream end, 

but the shedding angle closer to the cylinder’s upstream end was smaller than the angle of 

yaw (Figure 17), opposite to Ramberg’s results (1983) shown in Figure 13. Thakur et al. 

described the difference between the two cases was because of the difference in the 

experimental setup (cylinder was towed in his experiment). The Strouhal number, based 

on the normal towing velocity of the cylinder, increased with the angle of inclination 

(0.24 for 30° and 0.28 for 60°) in agreement with Van Atta’s (1968) observation. Zhao et 

al. (2009) in their direct numerical simulation (DNS) found that for a fixed cylinder, the 

pressure coefficient defined as CP= (p-pS)/(ρU2/2), where pS is the pressure at the position 
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of θ= 0°, decreases as the inclination angle increases and the Strouhal number and drag 

coefficient followed the IP for θ ≤ 30°.  

 
Figure 17. Vortex shedding behind an inclined cylinder towed in a tank for (a) 0°, 

(b) 30° and (c) 60° (Figure from Thakur et al., 2004). 

 

The discrepancy of validity of IP between Lucor and Karniadakis (2003) and 

Zhao et al. (2009) is attributed to the use of varying aspect ratio (22 and 9.6 respectively). 

In order to avoid the discrepancy caused based on the aspect ratios, Willden and Guerbi 

(2010) performed DNS analysis on a fixed and forced vibrating cylinder with an aspect 

ratio of 50 for angles of inclination ranging from 0° to 80°. For stationary cylinders, they 

validated IP for the angles of inclination between 40° to 60°. The shedding angle for 60° 

inclined stationary cylinder was around 11° (similar to Lucor and Karniadakis, 2003) and 

for the cylinder inclined at 80° they observed shedding angle to be the same as the angle 

of inclination. From Figure 18, it can be seen that the flow variables decrease almost 

linearly with the decrease in angle of inclination. The ratio of normalized coefficients to 

the actual coefficients around unity implies the validity of IP in Figures 18d, e and f. 
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Willden and Guerbi (2010) also performed simulations for forced oscillating cylinders 

(A/D = 0.3) exposed to inclined flow and validated IP till 60° inclination angle.  

 
Figure 18. Influence of angle of Inclination on (a) Strouhal number, (b) Drag 

Coefficient, (c) Lift coefficient; (d), (e) and (f) the ratio of normalized coefficients 
after applying the IP to actual coefficients (Figure from Willden and Guerbi, 2010). 

 

Yeo and Jones (2008) performed Detached Eddy Simulation (DES) to study the 

three-dimensional characteristics at very high Reynolds number (1.4×105) around an 

inclined cylinder (θ= 30° and 45°). They pointed that the flow is highly three-

dimensional with the vortex lines around the cylinder neither parallel nor linearly oblique 

to the cylinder axis. Similarly, Chen and Li (2009) performed Reynolds-Averaged 

Navier-Stokes (RANS) simulation to study the vortex-induced vibration in a 30° inclined 

Carbon Fiber Reinforced Polymer (CFRP) stay cable (taking into consideration the wind 

profile). They found a maximum cross-flow displacement of 0.189D at mid-span with 

remarkable fluctuation in the lift coefficient amplitude, which varies along the span of the 

cable. VIV of non-circular cross-sections like square cylinders, inclined to the flow were 

studied by Sheard et al. (2010). 
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2.3.1. Amplitude and frequency response of flexibly mounted inclined cylinders  

Recently, Franzini et al. (2009) performed experiments on inclined cylinders with 

a low m*ζ placed in a water tunnel in the Re range of 2,000-8,000, for angles of 

inclination of 0°, 20° and 45°. They used cylinders with an aspect ratio of 18 and 24 in 

order to check the influence of aspect ratio. Because of the similarity of results for both 

aspect ratios, the cylinder with an aspect ratio of 18 was chosen to compare the results 

with other inclined cylinders. To avoid three-dimensionality in flow, they had a small gap 

(0.09D) between the cylinder bottom end and the test section floor. 

They measured the non-dimensional amplitude (A*) at different reduced 

velocities (U*) for different inclinations. It can be seen in Figure 19 that the peak 

amplitude decreases as the inclination increases from 0° to 20° but it is the same for 45° 

when compared to 20°. The commencement of the oscillations delays as the inclination 

increases. The peak amplitudes are very similar in the initial branch of oscillations and 

the maximum amplitudes for the vertical cylinder and the inclined cylinder are 0.8 and 

0.65 respectively in the U* range of 5-6.  

 

Figure 19.  A* plotted against U* for 0° (), 20° () and 45° () for m*ζ = 0.0125 
(Reproduced from Franzini et al, 2009). 
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The frequency response as shown in Figure 20 indicates almost identical 

characteristics for the vertical and the inclined cylinder cases. 

 

Figure 20. Non-dimensional frequency f* versus the reduced velocity U* for 0° (), 
20° () and 45° () for m*ζ = 0.0125 (Reproduced from Franzini et al, 2009). 

 
 
2.3.2. Fluid forces on flexibly mounted inclined cylinders  

Franzini et al. (2009) measured the fluid forces acting on the cylinder and 

normalized it using ½ρU2DL for the vertical cylinder. The r.m.s. lift coefficient and the 

drag coefficient had their maximum values of 2.2 and 2.3 respectively at the reduced 

velocity of U*= 4 as shown in Figures 21 and 22. The lift and drag coefficients decrease 

as the inclination increases.  

The variation of the wake flow in the cylinder’s spanwise direction makes the lift 

coefficient vary along the cylinder length. Zhao et al. (2009) found that the difference 

between the total and sectional r.m.s. force coefficient is mainly because of the phase 

variation in the vortex shedding along the cylinder’s spanwise direction. The total force 

coefficients are actually the results of the averaged sectional force coefficients. They 

found that the r.m.s. sectional drag coefficient was about twice of the r.m.s. total drag 
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coefficient and the r.m.s. sectional lift coefficient was also 7-10% larger than the r.m.s. 

total lift coefficient. In spite of the differences, the mean sectional drag coefficient was 

same as the mean total drag coefficient. 

 

Figure 21. Lift coefficient CL(RMS)  versus the reduced velocity U* for 0° (), 20° () 
and 45° () for m*ζ = 0.0125 (Reproduced from  Franzini et al., 2009). 

 

 

Figure 22. Drag coefficient CD(MEAN) versus the reduced velocity U* for 0° (), 20° 
() and 45° () for m*ζ = 0.0125 (Reproduced from Franzini et al., 2009). 

 

2.3.3. Independence Principle (IP)  

In order to check the validity of IP, Franzini et al. (2009) re-plotted the results in 

Figures 19-22 against the normal reduced velocity (U*n), which is given as: 
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                                                                                                      (2.2)                                                                   

Figure 23 shows that for all angles of inclination, the amplitude response is almost 

the same in the initial branch of oscillation (U*n =3.5-4.5) and the maximum amplitudes 

occur in the same range of normal reduced velocity for all the cases. The frequency 

response (Figure 24) is almost identical for all the cases. 

 

Figure 23. Non-dimensional A* versus normal reduced velocity U*n after applying 
the IP for 0° (), 20° () and 45° () for m*ζ = 0.0125 (Reproduced from Franzini 

et al., 2009). 

 

Figure 24. Non-dimensional frequency f* versus the normal reduced velocity U*n 
after applying the IP for 0° (), 20° () and 45° () for m*ζ = 0.0125 (Reproduced 

from Franzini et al., 2009). 
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The drag coefficient (Figure 25) and the lift coefficient (Figure 26) decrease as 

the angle of inclination increases, when plotted against the normal reduced velocity. 

 

Figure 25. Drag coefficient CD(MEAN) versus the normal reduce velocity U*n after 
applying the IP for 0° (), 20° () and 45° () for m*ζ = 0.0125 (Reproduced from 

Franzini et al., 2009). 

 

Figure 26. Lift coefficient CL(RMS) versus the normal reduced velocity U*n after 
applying the IP for 0° (), 20° () and 45° () for m*ζ = 0.0125 (Reproduced from  

Franzini et al., 2009). 

 

Table 2 summarizes various studies on inclined cylinder in flow. 
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Table 2. Enlisting the research work done on inclined cylinder 

Author (year) Fixed/ 
Moving 
Cylinder 

IP  
Validity 

Angle(s) of 
Inclination 
Discussed 

Comments 

Hanson (1966) 
(Experimental) 

Moving Yes θ < 68° Vortex shedding frequencies 
deviation is found at θ=70° using 

Strouhal number (St). 
Surry and Surry 

(1967) 
(Experimental) 

Fixed Yes 40° ≤ θ ≤ 
50° 

IP was valid based on the St using 
the normal velocity component. 

Van Atta (1968) Fixed Yes θ ≤ 35° He validated IP based on the vortex 
shedding behind the cylinder. 

Vortex shedding was slower than 
predicted by IP beyond 35°. 

Ramberg (1983) 
(Experimental) 

Fixed/ 
Forced 

Oscillatio
n 

No (fixed) 
 

Yes (forced 
oscillation) 

Θ ≤ 60° 
(fixed) 

 
Θ ≤ 50° 
(forced 

oscillation) 
 

For stationary cylinder, vortex-
shedding frequency is larger than IP 

and the shedding angle, vortex 
formation length, the base pressure 
and the wake width are all less than 

expected.  
For moving cylinder, because of the 

parallel shedding, St follows IP. 
Kozakiewicz et 

al. (1995) 
Fixed Yes θ < 55° Based on the flow visualizations, 

streamlines were perpendicular to 
the cylinder axis till 55°. At 55° and 

70°, the water particles moved 
along the cylinder axis rather than 

perpendicularly. 
Lucor and 

Karniadakis 
(2003) (DNS) 

Fixed/ 
Moving  

No -60° ≥ θ ≥ -
70° 

The drag coefficient is larger than 
predicted by IP. 

Zhao et al. 
(2009) 
(DNS) 

Fixed No θ ≤ 60° The Strouhal number and mean 
drag coefficient followed IP for θ ≤ 
30° whereas; the rms lift coefficient 

is smaller than IP. 
Franzini et al. 

(2009) 
(Experimental) 

Moving Yes θ ≤ 45° The lock-in region, after applying 
IP converged into the same range 

for all the Inclination.  
Willden and 

Guerbi (2010) 
(DNS) 

Fixed/ 
Forced 
Oscil-
lation 

Yes  θ ≤ 40° 
(Fixed) 
θ ≤ 60° 
(Forced 

Oscillation) 

For stationary cylinder, Strouhal 
number follows IP at 40° and the 
critical angle is between 40° and 

60°.  
For forced vibrating cylinder, 

parallel shedding is observed till 
60°. 
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As discussed above, the majority of research conducted to study inclined 

cylinders in flow are for fixed cylinders and only few deal with the study of VIV of 

flexibly mounted inclined cylinder. Experimentally, the work of Franzini et al. (2009) 

provides an insight but it is restricted to small angles of inclination (0°, 20° and 45°). For 

higher angles of inclination, Lucor and Karniadakis (2003) using numerical simulation 

proves the invalidity of IP in the inclination range of -60° ≥ θ ≥ 70° based on the drag 

force. There are conflicting conclusions in terms of the critical angle of inclination for the 

validity of IP and many unanswered questions including:  

1. What is the critical angle of inclination beyond which IP is not valid?  

2. How does the cylinder’s response change by varying system parameter such as the 

mass ratio?  

3. Do we see any oscillation for large angle of inclination?  

4. How will the flow pattern change with varying angles of inclination?  

The present study aims to answer the above questions by conducting experiments 

in a water tunnel on a flexibly mounted rigid cylinders inclined to an angle of inclination 

up to 75° in the Reynolds number range of 500-4,000. 
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CHAPTER 3 
 

EXPERIMENTAL SETUP AND RESULTS 

3.1. Experimental Setup 

The experiments were performed in a re-circulating water tunnel with a test 

section of 1.27 m × 0.50 m × 0.50 m with turbulence intensity of less than 1% RMS up to 

0.3 m/s flow velocity. To reduce the damping in the system, two air bearings were 

mounted on rigid parallel shafts located atop the water tunnel test section, resulting in a 

one-degree-of-freedom system with oscillations in the cross-flow direction only (Figure 

27).  

    

      

Figure 27. Experimental Setup. 
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The natural frequency (fN) and the structural damping of the system were 

measured by performing a decay test in air as shown in Figure 28. The structural damping 

coefficient (ζ) of the system is around 0.0045 and the mass ratio (m*= 4m/πρD2L) of the 

cylinder is approximately 6.5, leading to a mass-damping coefficient of m*ζ = 0.029 for 

all angles of inclination. The natural frequency of the system was 1.0 Hz. The mass of the 

system includes the mass of the cylinder and the moving objects such as the air bearings 

and the supporting plate for mounting the cylinder. Solid aluminum cylinders with a 

diameter (D) of 12.7 mm were machined to achieve the desired inclination such that for 

each cylinder, the lower end was cut parallel to the test section floor. Cylinders with θ = 

0°, 20°, 45°, 55°, 65° and 75° were tested. The immersed aspect ratio (L/D) of the 

cylinders was kept constant at approximately 29 for every angle of inclination.  

 

 
 

Figure 28. Decay test in air. 
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The end conditions of the cylinder play an important role in the observed VIV 

response as demonstrated by Morse et al. (2008). For a vertical or inclined cylinder 

partially submerged in water, the upper end of the cylinder is in contact with the free 

surface and the lower end is submerged in water. The free surface does not influence the 

parallel vortex shedding (Khalak and Williamson, 1996) but the lower end of the cylinder 

can induce three-dimensionality into the flow. The experiments here were performed on 

cylinders with an unattached streamlined end plate with a gap of 1 mm (0.08D). This gap 

size was chosen because for a normal-incidence cylinder, a gap size smaller than 15% of 

the cylinder diameter results in a behavior similar to a cylinder with an attached endplate 

– i.e., negligible three-dimensional effects due to the end condition – without increasing 

the added mass due to the attached endplate (Morse et al., 2008). Flow visualization was 

conducted on the endplate to make sure no major separation was resulted by the 

endplate’s leading edge. The displacement was measured using a Micro-Epsilon (ILD 

1402-600) non-contacting laser sensor.  

3.2. Experimental Results 

For each inclination, the water level was held constant and the flow velocity was 

increased from zero in small steps. At each step the amplitude and frequency were 

calculated using the recorded displacement time series and the reduced velocity was 

calculated as U* = U/fN D.  

3.2.1. VIV of vertical and inclined cylinders  

One set of experiments was performed on a normal-incidence cylinder to have a 

base for comparison. These results were in agreement with those of Khalak and 
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Williamson (1999) in terms of the onset and width of the lock-in region as shown in 

Figure 29(a). The upper branch was not observed in our tests due to the difference in the 

mass-damping coefficient (m*ζ) compared with Khalak and Williamson’s tests. Figure 

29(b) shows the non-dimensional frequency (f*= f/fN, where f is the cylinder’s oscillating 

frequency) plotted against U*. As the flow velocity increases, the oscillating frequency 

(f) approaches the natural frequency (fN) of the system and the cylinder starts oscillating 

in the crossflow direction.  

  In order to validate the IP, five sets of experiments were performed on cylinders 

with various angles of inclination up to 75°. Figure 30 shows the amplitude and 

frequency response for a 20°-inclined cylinder compared with the results from Franzini et 

al. (2009). The onset of lock-in region (≈ U*= 4), the width of lock-in region (despite a 

slight difference at the end of the lock-in region) and the maximum amplitude (A*= 0.65) 

are similar to the case of a vertical cylinder, which was predictable for such a small 

increase in the angle of inclination. The maximum amplitude is observed at around U*= 

5. It is also interesting to note that, despite the difference in m*ζ and m* compared to 

Franzini et al. (2009), the response amplitude in the current experiments is similar to their 

results. The absence of the upper branch in their case is in agreement with the current 

results. Higher f* was observed in the results of Franzini et al. because of smaller 

cylinder mass ratio (m*= 2.5). Similar frequency response for vertical cylinder with small 

mass ratio (m*= 2.4) was also observed by Khalak and Williamson (1997b) with 

damping similar to current experiment (ζ = 0.45%). 
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(a) 

 
(b) 

 
Figure 29. (a) Comparison of the results of the present experiments for a normal 

incidence cylinder (m*ζ  = 0.029) with 1 mm gap (0.08D) with Khalak & 
Williamson’s (1999) results (m*ζ  = 0.013); (b) Frequency response for a normal-

incidence cylinder (m*ζ  = 0.029). 
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(a) 

 
(b) 

 
Figure 30. (a) Amplitude and (b) frequency response for a 20°-inclined cylinder with 
1 mm gap (0.08D), based on the current experiments (m*ζ= 0.029) and Franzini et 

al. (2009) (m*ζ= 0.0125). 

 

Figure 30 shows the amplitude and frequency response for a 20°-inclined cylinder 

compared with the results from Franzini et al. (2009). The onset of lock-in region (≈ U*= 

4), the width of lock-in region (despite a slight difference at the end of the lock-in region) 
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and the maximum amplitude (A*= 0.65) are similar to the case of a vertical cylinder, 

which was predictable for such a small increase in the angle of inclination. The maximum 

amplitude is observed at around U*= 5. It is also interesting to note that, despite the 

difference in m*ζ and m* compared to Franzini et al. (2009), the response amplitude in 

the current experiments is similar to their results. The absence of the upper branch in their 

case is in agreement with the current results. Higher f* was observed in the results of 

Franzini et al. because of smaller cylinder mass ratio (m*= 2.5). Similar frequency 

response for vertical cylinder with small mass ratio (m*= 2.4) was also observed by 

Khalak and Williamson (1997b) with damping similar to current experiment (ζ = 0.45%). 

The 45°-inclined cylinder’s response is shown in Figure 31. The lock-in region 

delays to start at U*= 5.5 compared to U*= 4 in the case of a vertical cylinder. The 

maximum amplitude remains the same for the 45°-inclined, 20°-inclined and vertical 

cylinder. Non-dimensional frequency is around f*= 1 almost throughout the lock-in range 

of 5 < U* < 14. The onset of the lock-in region and the maximum amplitude are similar 

to the results of Franzini et al. (2009).   
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(a) 

 
(b) 

 
Figure 31. (a) Amplitude and (b) frequency response for a 45°-inclined cylinder with 
a 1 mm gap (0.08D), based on the current experiments  (m*ζ= 0.029) and Franzini 

et al. (2009) (m*ζ= 0.0125). 
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(a) 

 
(b) 

 
Figure 32. (a) Amplitude and (b) frequency response for a 55°-inclined cylinder with 

1 mm gap (0.08D). 

 

Figure 32 shows the amplitude and frequency response for θ= 55° tested in the 

current experiments. The onset of lock-in region delays compared to smaller angles of 

inclination and the peak amplitude is decreased. Figures 33 and 34 show the amplitude 

and frequency for 65° and 75°-inclined cylinders. The width of the lock-in region 
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decreases as seen for both the angles when compared to 55°-inclined cylinder, indicating 

the possible dominant effect of axial component of flow velocity. The peak amplitude 

also decreases from 0.57 to 0.38 for 65° and 75° respectively. Various runs for 65°-

inclined cylinder show the good repeatability of the experiments. The oscillating 

frequencies for all the cylinders remain close to the natural frequency of the system. 

The amplitude and frequency response for all the angles of inclination are plotted 

in Figure 35. Based on this figure, it is true that “the lock-in range shrinks with increasing 

yaw angle but this will not necessarily diminish the magnitude of the self-excited 

response, rather it will simply delay its onset or hasten its completion a small amount for 

increasing flow speed” (Ramberg, 1983).  
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(a) 

 
(b) 

Figure 33. Various runs showing the (a) amplitude and (b) frequency response for a 
65°-inclined cylinder with 1 mm gap (0.08D). 
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(a) 

 
(b) 

Figure 34. (a) Amplitude and (b) frequency response for a 75°-inclined cylinder with 
1 mm gap (0.08D). 
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(a) 

 
(b) 

 
Figure 35. (a) Amplitude and (b) frequency response for all the angles of inclination 

with 1 mm gap (0.08D) and m*ζ= 0.029. 
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In order to validate the IP, the amplitude and frequency response were plotted 

against the normalized reduced velocity (U*n= U*cosθ) in Figure 36. The lock-in region 

begins at U*n≈ 4 and the maximum amplitude is almost the same for all of these 

inclinations. The width of the lock in range remains the same for 0° and 20°, it decrease 

slightly for 45° and 55°, and there is a dramatic decrease in its width for 65° and 75°. For 

these last two angles of inclination, the lock in range changes it pattern and the relative 

wide plateau of the large amplitude oscillations observed for the lower angles of 

inclination disappears and instead the large-amplitude oscillation occurs over a very short  

range of normalized reduced velocities. The maximum amplitude for all inclinations, 

except 75°, lies in the U*n range of 4–6, in agreement with Ramberg (1983) and Lucor 

and Karniadakis (2003). The maximum amplitude is almost similar for 20° and 45° (also 

observed by Franzini et al., 2009) but it decreases as the angle of inclination decreases 

 

 

 

 

 

 

 from 55° to 75°. Lucor and Karniadakis (2003) observed decrease in the maximum 

amplitude A* from 0.63 to 0.52 for -60° and -70°-inclined cylinder respectively. In the 

present case, the peak amplitude A* decreases from 0.57 to 0.38 for 65° and 75° angle of 

Table 3. Peak amplitudes for different angles of inclination 

Angle of Inclination (θ  )  Non‐Dimensional Peak Amplitude (A*) 

0° 0.64 

20° 0.65 

45° 0.64 

55° 0.59 

65° 0.57 

75° 0.38 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inclination respectively. The peak amplitudes for various inclinations are given in Table 

3. 

 
(a) 

 
(b) 

 
Figure 36. (a) Amplitude and (b) frequency response for all the angle of inclination 
after applying the Independence Principle (U*n= U*cosθ) with 1 mm gap (0.08D) 

and m*ζ= 0.029. 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3.2.2. Effect of the mass ratio on VIV of inclined cylinders 

Another series of experiments were performed on 45° and 65°-inclined cylinders 

with a different mass ratio m*= 13 (instead of m*= 6.5) and with the same damping 

coefficient (ζ= 0.0045) leading to m*ζ= 0.0585. The mass ratio was increased by putting 

dummy weights on top of the plate holding the test cylinder. Because of the increase in 

mass, the natural frequency fN of the system reduced to 0.75 Hz from 1.0 Hz. The end 

plates were used to maintain the 1 mm gap (0.08D) similar to the earlier experiments. 

The higher m* does not seem to have any significant impact on the amplitude and 

frequency response of 45°-inclined cylinder as shown in Figure 37. The lock-in range and 

the maximum amplitude are similar to the case with m*= 6.5. Figure 38 shows the effect 

of increasing mass ratio on the 65°-inclined cylinder. The width of the lock-in region 

increases till U*= 16 for the system with a larger mass ratio. The effect of doubling the 

mass ratio does not have any significant effect on the validity of IP. As shown in Figure 

39, the width of the lock in range decreases dramatically as the angle of inclination 

changes from 45° to 65°, in agreement with the results of the smaller added mass 

discussed previously. It ought to be mentioned that although the case of m*=13 is 

considered a relatively higher mass ratio case, it does not represent a high-mass ratio case 

as could be obtained in tests conducted in air flow, instead of water flow.  
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(a) 

 
(b) 

 
Figure 37. Comparison of (a) amplitude and (b) frequency response for 45°-inclined 

cylinder with m*= 6.5 (m*ζ= 0.029) and m*= 13 (m*ζ= 0.0585) with 1 mm gap 
(0.08D). 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(a) 

 
(b) 

 
Figure 38. Comparison of (a) amplitude and (b) frequency response for 65°-inclined 

cylinder with m*= 6.5 (m*ζ= 0.029) and m*= 13 (m*ζ= 0.0585) with 1 mm gap 
(0.08D). 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(a) 

 
(b) 

 
Figure 39. (a) Amplitude and (b) frequency response after applying IP to 45° and 

65°-inclined cylinder with m*= 13 (m*ζ= 0.0585). 
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3.2.3. Effect of positive and negative angles on VIV of inclined cylinders 

King (1977) showed that the inclined cylinders response was identical for positive 

and negative angles of inclination (-45°< θ < 45°) in his experiments. We investigate this 

behavior for ± 45° and ± 65°-inclined cylinders.   

Figure 40 shows the amplitude and frequency response for ±45°-inclined cylinder.  

The response is similar in terms of the onset of lock-in and the maximum amplitude but 

the width of the lock-in region increases for -45°-inclined cylinder. This difference could 

be due to the end condition effects. The oncoming flow first approaches the bottom end 

of the cylinder leading to axial flow moving up the cylinder, as opposed to down in the 

previous case. 

The effect of negative angle of inclination on 65°-inclined cylinder is also similar 

to 45°-inclined cylinder as shown in Figure 41.  The frequency response for -65°-inclined 

cylinder is close to unity but it increases at the end of the lock-in region. The maximum 

amplitude and the width of the lock-in region increase for the -65°-inclined cylinder. The 

maximum cylinder response is around A*= 0.64 very close to Lucor and Karniadakis 

(2003) results. They had performed numerical simulation on a -60°-inclined cylinder with 

m*ζ= 0.003 (m*= 2) and observed a maximum amplitude of A*= 0.63. An important 

point to note is that even though similar maximum amplitudes are observed in both cases, 

their m*ζ was an order of magnitude smaller than the current experiments. As shown in 

Figure 42, the negative angle of inclination does not affect the validity of IP compared to 

the positive angles of inclination shown in Figure 36. 
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(a) 

 
(b) 

 
Figure 40. Comparison of (a) amplitude and (b) frequency response for ±45°-

inclined cylinder with 1 mm gap (0.08D) and m*ζ= 0.029. 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(a) 

 
(b) 

 
Figure 41. Comparison of (a) amplitude and (b) frequency response for ±65°-

inclined cylinder with 1 mm gap (0.08D) and m*ζ= 0.029. 
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(a) 

 
(b) 

 
Figure 42. (a) Amplitude and (b) frequency response after applying IP to -45° and -

65°-inclined cylinder with m*= 6.5 (m*ζ= 0.029). 
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3.2.4. Flow Visualization  

In order for IP to be valid, the inclined cylinder must behave similarly to vertical 

cylinder in terms of the onset of lock-in, its width and the magnitude of VIV. Another 

important criterion is that the Von Karman vortex street should be parallel to the 

cylinder’s axis, which will be discussed in this section. 

The flow visualization was conducted using colored dye to observe the Von 

Karman vortex street in the wake of the oscillating cylinder with angles of inclination of 

θ = 0°, 45° and 65°. Figure 43(a) shows the parallel vortex shedding in the wake of the 

vertical cylinder as expected. The shedding pattern is of the type 2S. The physical 

importance of parallel shedding is directly related to the spanwise coherence of vortex 

shedding which in turn reflects the spanwise correlation of fluctuating lift force 

(Ramberg, 1983). 

In the wake of the 45°-inclined cylinder as shown in Figure 43(b), the vortices are 

also shed parallel to the cylinder axis. Ramberg (1983) performed flow visualization on 

freely moving cylinder and observed parallel vortex shedding till θ = 50°. Here, parallel 

vortex shedding is observed in the wake of the 65°-inclined cylinder as shown in Figure 

43(c), in agreement with Lucor and Karniadakis (2003), who observed parallel vortex 

shedding for -60° and -70°-inclined cylinder in their numerical simulation. 

The parallel shedding is observed even in cases with large angles of inclination, 

which suggests that the shedding is forced to be parallel by the movement of the cylinder.  
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(a) 0°, U*= 4.4 

 

                     
(b) 45°, U*n= 4.4                                                     

 

      
(c) 65°, U*n= 4.3                                                  

Figure 43. Flow visualization in the wake of (a) vertical cylinder, (b) 45°-inclined 
cylinder and (c) 65°-inclined cylinder. Flow is from left to right. 
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CHAPTER 4 

CONCLUSIONS 

A series of experiments were conducted to study vortex-induced vibrations of 

flexibly mounted rigid inclined cylinders with one degree of freedom – transverse to the 

oncoming flow. Angles of inclination from 0 to 75° in the subcritical Re range of 500-

4000 were considered. For m*ζ = 0.029, the upper branch was absent for the vertical 

cylinder, in agreement with previous results. The onset of lock-in region delayed as the 

angle of inclination was increased when plotted against U*. The maximum amplitude 

(A*= 0.66) for 20° and 45°-inclined cylinder were in agreement with Franzini et al. 

(2009) despite the difference in mass-damping factor (m*ζ= 0.0125 – Franzini et al., 

2009). For θ= 55°, 65° and 75°, the maximum A* decreased to 0.59, 0.57 and 0.39 

respectively. After applying the Independence Principle (IP), the width of the lock-in 

region decreased with increasing angle of inclination, and for 75°-inclined cylinder it was 

in the U*n  range of 3-5. The frequency response was close to unity for all the angle of 

inclination. It turned out that the IP is not valid for angles of inclination larger than 55°, 

as the width and the pattern of the lock in region changed dramatically for larger angles. 

Experiments were also performed to study the effect of mass ratio (m*) on the 

results. Cases of 45° and 65°-inclined cylinder were considered with the same damping 

coefficient as previous runs (ζ= 0.0045). The mass ratio was increased from 6.5 to 13 

leading to m*ζ= 0.058. The change in mass ratio did not have any significant effect on 

the 45°-inclined cylinder, but in the case of 65°-inclined cylinder the lock-in region 

increased. The IP was not valid for 65°.   
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Tests were also conducted on 45° and 65°-inclined cylinder to see the difference 

in cylinders response with a negative angle of inclination. The width of the lock-in region 

increased for both angles compared to the positive angles, but the onset of lock-in 

remained the same. No effect was seen on the maximum amplitude of the 45°-inclined 

cylinder but for θ= 65°, the maximum amplitude increased marginally from 0.57 to 0.65.  

Finally, flow visualization was performed using colored dye on vertical cylinder, 

45° and 65°-inclined cylinder. Parallel vortex shedding was observed for all three cases 

in agreement with Ramberg (1983) and Lucor and Karniadakis (2003).    
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